Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutaredoxin 1 Downregulation in the Substantia Nigra Leads to Dopaminergic Degeneration in Mice.

Identifieur interne : 000070 ( Main/Exploration ); précédent : 000069; suivant : 000071

Glutaredoxin 1 Downregulation in the Substantia Nigra Leads to Dopaminergic Degeneration in Mice.

Auteurs : Aditi Verma [Inde] ; Ajit Ray [Inde] ; Deepti Bapat [Inde] ; Latha Diwakar [Inde] ; Reddy Peera Kommaddi [Inde] ; Bernard L. Schneider [Suisse] ; Etienne C. Hirsch [France] ; Vijayalakshmi Ravindranath [Inde]

Source :

RBID : pubmed:32618039

Abstract

BACKGROUND

Parkinson's disease (PD) is characterized by a severe loss of the dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Perturbation of protein thiol redox homeostasis has been shown to play a role in the dysregulation of cell death and cell survival signaling pathways in these neurons. Glutaredoxin 1 (Grx1) is a thiol/disulfide oxidoreductase that catalyzes the deglutathionylation of proteins and is important for regulation of cellular protein thiol redox homeostasis.

OBJECTIVES

We evaluated if the downregulation of Grx1 could lead to dopaminergic degeneration and PD-relevant motor deficits in mice.

METHODS

Grx1 was downregulated unilaterally through viral vector-mediated transduction of short hairpin RNA against Grx1 into the SNpc. Behavioral assessment was performed through rotarod and elevated body swing test. Stereological analysis of tyrosine hydroxylase-positive and Nissl-positive neurons was carried out to evaluate neurodegeneration.

RESULTS

Downregulation of Grx1 resulted in contralateral bias of elevated body swing and reduced latency to fall off, accelerating rotarod. This was accompanied by a loss of tyrosine hydroxylase-positive neurons in the SNpc and their DA projections in the striatum. Furthermore, there was a loss Nissl-positive neurons in the SNpc, indicating cell death. This was selective to the SNpc neurons because DA neurons in the ventral tegmental area were unaffected akin to that seen in human PD. Furthermore, Grx1 mRNA expression was substantially decreased in the SNpc from PD patients.

CONCLUSIONS

Our study indicates that Grx1 is critical for the survival of SNpc DA neurons and that it is downregulated in human PD. © 2020 International Parkinson and Movement Disorder Society.


DOI: 10.1002/mds.28190
PubMed: 32618039


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutaredoxin 1 Downregulation in the Substantia Nigra Leads to Dopaminergic Degeneration in Mice.</title>
<author>
<name sortKey="Verma, Aditi" sort="Verma, Aditi" uniqKey="Verma A" first="Aditi" last="Verma">Aditi Verma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neuroscience, Indian Institute of Science, Bangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Neuroscience, Indian Institute of Science, Bangalore</wicri:regionArea>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ray, Ajit" sort="Ray, Ajit" uniqKey="Ray A" first="Ajit" last="Ray">Ajit Ray</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neuroscience, Indian Institute of Science, Bangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Neuroscience, Indian Institute of Science, Bangalore</wicri:regionArea>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bapat, Deepti" sort="Bapat, Deepti" uniqKey="Bapat D" first="Deepti" last="Bapat">Deepti Bapat</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neuroscience, Indian Institute of Science, Bangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Neuroscience, Indian Institute of Science, Bangalore</wicri:regionArea>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Diwakar, Latha" sort="Diwakar, Latha" uniqKey="Diwakar L" first="Latha" last="Diwakar">Latha Diwakar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neuroscience, Indian Institute of Science, Bangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Neuroscience, Indian Institute of Science, Bangalore</wicri:regionArea>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Brain Research, Indian Institute of Science, Bangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Brain Research, Indian Institute of Science, Bangalore</wicri:regionArea>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kommaddi, Reddy Peera" sort="Kommaddi, Reddy Peera" uniqKey="Kommaddi R" first="Reddy Peera" last="Kommaddi">Reddy Peera Kommaddi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neuroscience, Indian Institute of Science, Bangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Neuroscience, Indian Institute of Science, Bangalore</wicri:regionArea>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Brain Research, Indian Institute of Science, Bangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Brain Research, Indian Institute of Science, Bangalore</wicri:regionArea>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schneider, Bernard L" sort="Schneider, Bernard L" uniqKey="Schneider B" first="Bernard L" last="Schneider">Bernard L. Schneider</name>
<affiliation wicri:level="1">
<nlm:affiliation>Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne</wicri:regionArea>
<wicri:noRegion>CH-1015 Lausanne</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hirsch, Etienne C" sort="Hirsch, Etienne C" uniqKey="Hirsch E" first="Etienne C" last="Hirsch">Etienne C. Hirsch</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut du Cerveau-ICM Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut du Cerveau-ICM Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ravindranath, Vijayalakshmi" sort="Ravindranath, Vijayalakshmi" uniqKey="Ravindranath V" first="Vijayalakshmi" last="Ravindranath">Vijayalakshmi Ravindranath</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neuroscience, Indian Institute of Science, Bangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Neuroscience, Indian Institute of Science, Bangalore</wicri:regionArea>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Brain Research, Indian Institute of Science, Bangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Brain Research, Indian Institute of Science, Bangalore</wicri:regionArea>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32618039</idno>
<idno type="pmid">32618039</idno>
<idno type="doi">10.1002/mds.28190</idno>
<idno type="wicri:Area/Main/Corpus">000041</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000041</idno>
<idno type="wicri:Area/Main/Curation">000041</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000041</idno>
<idno type="wicri:Area/Main/Exploration">000041</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutaredoxin 1 Downregulation in the Substantia Nigra Leads to Dopaminergic Degeneration in Mice.</title>
<author>
<name sortKey="Verma, Aditi" sort="Verma, Aditi" uniqKey="Verma A" first="Aditi" last="Verma">Aditi Verma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neuroscience, Indian Institute of Science, Bangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Neuroscience, Indian Institute of Science, Bangalore</wicri:regionArea>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ray, Ajit" sort="Ray, Ajit" uniqKey="Ray A" first="Ajit" last="Ray">Ajit Ray</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neuroscience, Indian Institute of Science, Bangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Neuroscience, Indian Institute of Science, Bangalore</wicri:regionArea>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bapat, Deepti" sort="Bapat, Deepti" uniqKey="Bapat D" first="Deepti" last="Bapat">Deepti Bapat</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neuroscience, Indian Institute of Science, Bangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Neuroscience, Indian Institute of Science, Bangalore</wicri:regionArea>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Diwakar, Latha" sort="Diwakar, Latha" uniqKey="Diwakar L" first="Latha" last="Diwakar">Latha Diwakar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neuroscience, Indian Institute of Science, Bangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Neuroscience, Indian Institute of Science, Bangalore</wicri:regionArea>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Brain Research, Indian Institute of Science, Bangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Brain Research, Indian Institute of Science, Bangalore</wicri:regionArea>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kommaddi, Reddy Peera" sort="Kommaddi, Reddy Peera" uniqKey="Kommaddi R" first="Reddy Peera" last="Kommaddi">Reddy Peera Kommaddi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neuroscience, Indian Institute of Science, Bangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Neuroscience, Indian Institute of Science, Bangalore</wicri:regionArea>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Brain Research, Indian Institute of Science, Bangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Brain Research, Indian Institute of Science, Bangalore</wicri:regionArea>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schneider, Bernard L" sort="Schneider, Bernard L" uniqKey="Schneider B" first="Bernard L" last="Schneider">Bernard L. Schneider</name>
<affiliation wicri:level="1">
<nlm:affiliation>Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne</wicri:regionArea>
<wicri:noRegion>CH-1015 Lausanne</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hirsch, Etienne C" sort="Hirsch, Etienne C" uniqKey="Hirsch E" first="Etienne C" last="Hirsch">Etienne C. Hirsch</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut du Cerveau-ICM Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut du Cerveau-ICM Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ravindranath, Vijayalakshmi" sort="Ravindranath, Vijayalakshmi" uniqKey="Ravindranath V" first="Vijayalakshmi" last="Ravindranath">Vijayalakshmi Ravindranath</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Neuroscience, Indian Institute of Science, Bangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Neuroscience, Indian Institute of Science, Bangalore</wicri:regionArea>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Brain Research, Indian Institute of Science, Bangalore, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Centre for Brain Research, Indian Institute of Science, Bangalore</wicri:regionArea>
<wicri:noRegion>Bangalore</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Movement disorders : official journal of the Movement Disorder Society</title>
<idno type="eISSN">1531-8257</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Parkinson's disease (PD) is characterized by a severe loss of the dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Perturbation of protein thiol redox homeostasis has been shown to play a role in the dysregulation of cell death and cell survival signaling pathways in these neurons. Glutaredoxin 1 (Grx1) is a thiol/disulfide oxidoreductase that catalyzes the deglutathionylation of proteins and is important for regulation of cellular protein thiol redox homeostasis.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>OBJECTIVES</b>
</p>
<p>We evaluated if the downregulation of Grx1 could lead to dopaminergic degeneration and PD-relevant motor deficits in mice.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>Grx1 was downregulated unilaterally through viral vector-mediated transduction of short hairpin RNA against Grx1 into the SNpc. Behavioral assessment was performed through rotarod and elevated body swing test. Stereological analysis of tyrosine hydroxylase-positive and Nissl-positive neurons was carried out to evaluate neurodegeneration.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Downregulation of Grx1 resulted in contralateral bias of elevated body swing and reduced latency to fall off, accelerating rotarod. This was accompanied by a loss of tyrosine hydroxylase-positive neurons in the SNpc and their DA projections in the striatum. Furthermore, there was a loss Nissl-positive neurons in the SNpc, indicating cell death. This was selective to the SNpc neurons because DA neurons in the ventral tegmental area were unaffected akin to that seen in human PD. Furthermore, Grx1 mRNA expression was substantially decreased in the SNpc from PD patients.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our study indicates that Grx1 is critical for the survival of SNpc DA neurons and that it is downregulated in human PD. © 2020 International Parkinson and Movement Disorder Society.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32618039</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1531-8257</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>35</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2020</Year>
<Month>10</Month>
</PubDate>
</JournalIssue>
<Title>Movement disorders : official journal of the Movement Disorder Society</Title>
<ISOAbbreviation>Mov Disord</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutaredoxin 1 Downregulation in the Substantia Nigra Leads to Dopaminergic Degeneration in Mice.</ArticleTitle>
<Pagination>
<MedlinePgn>1843-1853</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/mds.28190</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Parkinson's disease (PD) is characterized by a severe loss of the dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Perturbation of protein thiol redox homeostasis has been shown to play a role in the dysregulation of cell death and cell survival signaling pathways in these neurons. Glutaredoxin 1 (Grx1) is a thiol/disulfide oxidoreductase that catalyzes the deglutathionylation of proteins and is important for regulation of cellular protein thiol redox homeostasis.</AbstractText>
<AbstractText Label="OBJECTIVES">We evaluated if the downregulation of Grx1 could lead to dopaminergic degeneration and PD-relevant motor deficits in mice.</AbstractText>
<AbstractText Label="METHODS">Grx1 was downregulated unilaterally through viral vector-mediated transduction of short hairpin RNA against Grx1 into the SNpc. Behavioral assessment was performed through rotarod and elevated body swing test. Stereological analysis of tyrosine hydroxylase-positive and Nissl-positive neurons was carried out to evaluate neurodegeneration.</AbstractText>
<AbstractText Label="RESULTS">Downregulation of Grx1 resulted in contralateral bias of elevated body swing and reduced latency to fall off, accelerating rotarod. This was accompanied by a loss of tyrosine hydroxylase-positive neurons in the SNpc and their DA projections in the striatum. Furthermore, there was a loss Nissl-positive neurons in the SNpc, indicating cell death. This was selective to the SNpc neurons because DA neurons in the ventral tegmental area were unaffected akin to that seen in human PD. Furthermore, Grx1 mRNA expression was substantially decreased in the SNpc from PD patients.</AbstractText>
<AbstractText Label="CONCLUSIONS">Our study indicates that Grx1 is critical for the survival of SNpc DA neurons and that it is downregulated in human PD. © 2020 International Parkinson and Movement Disorder Society.</AbstractText>
<CopyrightInformation>© 2020 International Parkinson and Movement Disorder Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Verma</LastName>
<ForeName>Aditi</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Centre for Neuroscience, Indian Institute of Science, Bangalore, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ray</LastName>
<ForeName>Ajit</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Centre for Neuroscience, Indian Institute of Science, Bangalore, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bapat</LastName>
<ForeName>Deepti</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Centre for Neuroscience, Indian Institute of Science, Bangalore, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Diwakar</LastName>
<ForeName>Latha</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Centre for Neuroscience, Indian Institute of Science, Bangalore, India.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre for Brain Research, Indian Institute of Science, Bangalore, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kommaddi</LastName>
<ForeName>Reddy Peera</ForeName>
<Initials>RP</Initials>
<AffiliationInfo>
<Affiliation>Centre for Neuroscience, Indian Institute of Science, Bangalore, India.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre for Brain Research, Indian Institute of Science, Bangalore, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schneider</LastName>
<ForeName>Bernard L</ForeName>
<Initials>BL</Initials>
<AffiliationInfo>
<Affiliation>Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hirsch</LastName>
<ForeName>Etienne C</ForeName>
<Initials>EC</Initials>
<Identifier Source="ORCID">0000-0003-4823-276X</Identifier>
<AffiliationInfo>
<Affiliation>Institut du Cerveau-ICM Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ravindranath</LastName>
<ForeName>Vijayalakshmi</ForeName>
<Initials>V</Initials>
<Identifier Source="ORCID">0000-0003-3226-0782</Identifier>
<AffiliationInfo>
<Affiliation>Centre for Neuroscience, Indian Institute of Science, Bangalore, India.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre for Brain Research, Indian Institute of Science, Bangalore, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mov Disord</MedlineTA>
<NlmUniqueID>8610688</NlmUniqueID>
<ISSNLinking>0885-3185</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Parkinson's disease</Keyword>
<Keyword MajorTopicYN="Y">dopaminergic neurons</Keyword>
<Keyword MajorTopicYN="Y">glutaredoxin 1</Keyword>
<Keyword MajorTopicYN="Y">shRNA</Keyword>
<Keyword MajorTopicYN="Y">tyrosine hydroxylase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32618039</ArticleId>
<ArticleId IdType="doi">10.1002/mds.28190</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD. Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem 1990;54:823-827. https://doi.org/10.1111/j.1471-4159.1990.tb02325.x</Citation>
</Reference>
<Reference>
<Citation>Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006;443:787-795. https://doi.org/10.1038/nature05292</Citation>
</Reference>
<Reference>
<Citation>Büeler H. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease. Exp Neurol 2009;218:235-246. https://doi.org/10.1016/j.expneurol.2009.03.006</Citation>
</Reference>
<Reference>
<Citation>Bose A, Beal MF. Mitochondrial dysfunction in Parkinson's disease. J Neurochem 2016;139:216-231. https://doi.org/10.1111/jnc.13731</Citation>
</Reference>
<Reference>
<Citation>Zucca FA, Segura-Aguilar J, Ferrari E, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Prog Neurobiol 2015;155:96-119. https://doi.org/10.1016/j.pneurobio.2015.09.012</Citation>
</Reference>
<Reference>
<Citation>Sofic E, Riederer P, Heinsen H, et al. Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 1988;74:199-205. https://doi.org/10.1007/BF01244786</Citation>
</Reference>
<Reference>
<Citation>Mochizuki H, Yasuda T. Iron accumulation in Parkinson's disease. J Neural Transm 2012;119:1511-1514. https://doi.org/10.1007/s00702-012-0905-9</Citation>
</Reference>
<Reference>
<Citation>Olanow CW, McNaught KSP. Ubiquitin-proteasome system and Parkinson's disease. Mov Disord 2006;21:1806-1823. https://doi.org/10.1002/mds.21013</Citation>
</Reference>
<Reference>
<Citation>Zheng Q, Huang T, Zhang L, et al. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front Aging Neurosci 2016;8:303. https://doi.org/10.3389/fnagi.2016.00303</Citation>
</Reference>
<Reference>
<Citation>Jenner P, Dexter DT, Sian J, Schapira AHV, Marsden CD. Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental lewy body disease. Ann Neurol 1992;32:S82-S87. https://doi.org/10.1002/ana.410320714.</Citation>
</Reference>
<Reference>
<Citation>Hirsch EC. Does oxidative stress participate in nerve cell death in Parkinson's disease? Eur Neurol 1993;33:52-59. https://doi.org/10.1159/000118538</Citation>
</Reference>
<Reference>
<Citation>Jenner P. Oxidative stress in Parkinson's disease. Ann Neurol 2003;53:S26-S38. https://doi.org/10.1002/ana.10483</Citation>
</Reference>
<Reference>
<Citation>Garcia-Garcia A, Zavala-Flores L, Rodriguez-Rocha H, Franco R. Thiol-redox signaling, dopaminergic cell death, and Parkinson's disease. Antioxid Redox Signal 2012;17:1764-1784. https://doi.org/10.1089/ars.2011.4501</Citation>
</Reference>
<Reference>
<Citation>Johnson WM, Wilson-Delfosse AL, Chen SG, Mieyal JJ. The roles of redox enzymes in Parkinson's disease: focus on glutaredoxin. Ther Targets Neurol Dis 2015;2(2):e790.</Citation>
</Reference>
<Reference>
<Citation>Ray A, Sehgal N, Karunakaran S, Rangarajan G, Ravindranath V. MPTP activates ASK1-p38 MAPK signaling pathway through TNF-dependent Trx1 oxidation in parkinsonism mouse model. Free Radic Biol Med 2015;87:312-325. https://doi.org/10.1016/j.freeradbiomed.2015.06.041</Citation>
</Reference>
<Reference>
<Citation>Durgadoss L, Nidadavolu P, Valli RK, et al. Redox modification of Akt mediated by the dopaminergic neurotoxin MPTP, in mouse midbrain, leads to down-regulation of pAkt. FASEB J 2012;26:1473-1483. https://doi.org/10.1096/fj.11-194100</Citation>
</Reference>
<Reference>
<Citation>Allen EMG, Mieyal JJ. Protein-thiol oxidation and cell death: regulatory role of glutaredoxins. Antioxid Redox Signal 2012;17:1748-1763. https://doi.org/10.1089/ars.2012.4644</Citation>
</Reference>
<Reference>
<Citation>Gravina SA, Mieyal JJ. Thioltransferase is a specific glutathionyl mixed-disulfide oxidoreductase. Biochemistry 1993;32:3368-3376. https://doi.org/10.1021/bi00064a021</Citation>
</Reference>
<Reference>
<Citation>Johnson WM, Yao C, Siedlak SL, et al. Glutaredoxin deficiency exacerbates neurodegeneration in C. elegans models of Parkinson's disease. Hum Mol Genet 2015;24:1322-35. https://doi.org/10.1093/hmg/ddu542</Citation>
</Reference>
<Reference>
<Citation>Saeed U, Ray A, Valli RK, Kumar AMR, Ravindranath V. DJ-1 loss by glutaredoxin but not glutathione depletion triggers Daxx translocation and cell death. Antioxid Redox Signal 2010;13:127-144. https://doi.org/10.1089/ars.2009.2832</Citation>
</Reference>
<Reference>
<Citation>Grimm D, Kay MA, Kleinschmidt JA. Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther 2003;7:839-850. https://doi.org/10.1016/s1525-0016(03)00095-9</Citation>
</Reference>
<Reference>
<Citation>Towne C, Aebischer P. Lentiviral and adeno-associated vector-based therapy for motor neuron disease through RNAi. Methods Mol Biol 2009;555:87-108. https://doi.org/10.1007/978-1-60327-295-7_7</Citation>
</Reference>
<Reference>
<Citation>Towne C, Raoul C, Schneider BL, Aebischer P. Systemic AAV6 delivery mediating RNA interference against SOD1: neuromuscular transduction does not alter disease progression in fALS mice. Mol Ther 2008;16:1018-1025. https://doi.org/10.1038/mt.2008.73</Citation>
</Reference>
<Reference>
<Citation>Leys C, Ley C, Klein O, Bernard P, Licata L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J Exp Soc Psychol 2013;49:764-766. https://doi.org/10.1016/J.JESP.2013.03.013</Citation>
</Reference>
<Reference>
<Citation>Borlongan C, Sanberg P. Elevated body swing test: a new behavioral parameter for rats with 6- hydroxydopamine-induced hemiparkinsonism. J Neurosci 1995;15:5372-5378. https://doi.org/10.1523/JNEUROSCI.15-07-05372.1995</Citation>
</Reference>
<Reference>
<Citation>Hirrlinger J, Gutterer JM, Kussmaul L, Hamprecht B, Dringen R. Microglial cells in culture express a prominent glutathione system for the defense against reactive oxygen species. Dev Neurosci 2000;22:384-392. https://doi.org/10.1159/000017464</Citation>
</Reference>
<Reference>
<Citation>Dringen R. Metabolism and functions of glutathione in brain. Prog Neurobiol 2000;62:649-671. https://doi.org/10.1016/S0301-0082(99)00060-X</Citation>
</Reference>
<Reference>
<Citation>Persson M, Brantefjord M, Hansson E, Rönnbäck L. Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-α. Glia 2005;51:111-120. https://doi.org/10.1002/glia.20191</Citation>
</Reference>
<Reference>
<Citation>Dopp JM, Sarafian TA, Spinella FM, Kahn MA, Shau H, de Vellis J. Expression of the p75 TNF receptor is linked to TNF-induced NFkappaB translocation and oxyradical neutralization in glial cells. Neurochem Res 2002;27:1535-1542. https://doi.org/10.1023/a:1021608724117</Citation>
</Reference>
<Reference>
<Citation>Breidert T, Callebert J, Heneka MT, Landreth G, Launay JM, Hirsch EC. Protective action of the peroxisome proliferator-activated receptor-γ agonist pioglitazone in a mouse model of Parkinson's disease. J Neurochem 2002;82:615-624. https://doi.org/10.1046/j.1471-4159.2002.00990.x</Citation>
</Reference>
<Reference>
<Citation>Balijepalli S, Tirumalai PS, Swamy KV, Boyd MR, Mieyal JJ, Ravindranath V. Rat brain thioltransferase: regional distribution, immunological characterization, and localization by fluorescent in situ hybridization. J Neurochem 1999;72:1170-1178. https://doi.org/10.1046/j.1471-4159.1999.0721170.x</Citation>
</Reference>
<Reference>
<Citation>Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 2013;1830:3217-3266. https://doi.org/10.1016/j.bbagen.2012.09.018</Citation>
</Reference>
<Reference>
<Citation>Rice ME, Russo-Menna I. Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neuroscience 1997;82:1213-1223. https://doi.org/10.1016/S0306-4522(97)00347-3</Citation>
</Reference>
<Reference>
<Citation>Dringen R, Pfeiffer B, Hamprecht B. Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 1999;19:562-569. https://doi.org/10.1523/JNEUROSCI.19-02-00562.1999</Citation>
</Reference>
<Reference>
<Citation>Gutbier S, Spreng AS, Delp J, et al. Prevention of neuronal apoptosis by astrocytes through thiol-mediated stress response modulation and accelerated recovery from proteotoxic stress. Cell Death Differ 2018;25(12):2101-2117. https://doi.org/10.1038/s41418-018-0229-x</Citation>
</Reference>
<Reference>
<Citation>Yang X, Yang H, Wu F, et al. Mn inhibits GSH synthesis via downregulation of neuronal EAAC1 and astrocytic xCT to cause oxidative damage in the striatum of mice. Oxid Med Cell Longe 2018;2018:4235695. https://doi.org/10.1155/2018/4235695</Citation>
</Reference>
<Reference>
<Citation>Aschauer DF, Kreuz S, Rumpel S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 2013;8:e76310-e76310. https://doi.org/10.1371/journal.pone.0076310</Citation>
</Reference>
<Reference>
<Citation>López-Grueso M, González-Ojeda R, Requejo-Aguilar R, et al. Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches. Redox Biol 2019;21:101049. https://doi.org/10.1016/J.REDOX.2018.11.007</Citation>
</Reference>
<Reference>
<Citation>Gorelenkova Miller O, Behring JB, Siedlak SL, et al. Upregulation of glutaredoxin-1 activates microglia and promotes neurodegeneration: implications for Parkinson's disease. Antioxid Redox Signal 2016;25:967-982. https://doi.org/10.1089/ars.2015.6598</Citation>
</Reference>
<Reference>
<Citation>Saeed U, Durgadoss L, Valli RK, Joshi DC, Joshi PG, Ravindranath V. Knockdown of cytosolic glutaredoxin 1 leads to loss of mitochondrial membrane potential: implication in neurodegenerative diseases. PLoS One 2008;3:e2459. https://doi.org/10.1371/journal.pone.0002459</Citation>
</Reference>
<Reference>
<Citation>Kenchappa RS, Ravindranath V. Glutaredoxin is essential for maintenance of brain mitochondrial complex I: studies with MPTP. FASEB J 2003;17:717-719. https://doi.org/10.1096/fj.02-0771fje</Citation>
</Reference>
<Reference>
<Citation>Diwakar L, Kenchappa RS, Annepu J, Ravindranath V. Downregulation of glutaredoxin but not glutathione loss leads to mitochondrial dysfunction in female mice CNS: implications in excitotoxicity. Neurochem Int 2007;51:37-46. https://doi.org/10.1016/j.neuint.2007.03.008</Citation>
</Reference>
<Reference>
<Citation>Klein C, Westenberger A. Genetics of Parkinson's disease. Cold Spring Harb Perspect Med 2012;2:a008888. https://doi.org/10.1101/cshperspect.a008888</Citation>
</Reference>
<Reference>
<Citation>Taipa R, Pereira C, Reis I, et al. DJ-1 linked parkinsonism (PARK7) is associated with Lewy body pathology. Brain 2016;139:1680-1687. https://doi.org/10.1093/brain/aww080</Citation>
</Reference>
<Reference>
<Citation>Johnson WM, Yao C, Siedlak SL, et al. Glutaredoxin deficiency exacerbates neurodegeneration in C. elegans models of Parkinson's disease. Hum Mol Genet 2015;24:1322-35. https://doi.org/10.1093/hmg/ddu542</Citation>
</Reference>
<Reference>
<Citation>Karunakaran S, Diwakar L, Saeed U, et al. Activation of apoptosis signal regulating kinase 1 (ASK1) and translocation of death-associated protein, Daxx, in substantia nigra pars compacta in a mouse model of Parkinson's disease: protection by alpha-lipoic acid. FASEB J 2007;21:2226-2236. https://doi.org/10.1096/fj.06-7580com</Citation>
</Reference>
<Reference>
<Citation>Ahmad F, Nidadavolu P, Durgadoss L, Ravindranath V. Critical cysteines in Akt1 regulate its activity and proteasomal degradation: implications for neurodegenerative diseases. Free Radic Biol Med 2014;74:118-128. https://doi.org/10.1016/j.freeradbiomed.2014.06.004</Citation>
</Reference>
<Reference>
<Citation>Brichta L, Greengard P. Molecular determinants of selective dopaminergic vulnerability in Parkinson's disease: an update. Front Neuroanat 2014;8:1-16. https://doi.org/10.3389/fnana.2014.00152</Citation>
</Reference>
<Reference>
<Citation>Kostuk EW, Cai J, Iacovitti L. Subregional differences in astrocytes underlie selective neurodegeneration or protection in Parkinson's disease models in culture. Glia 2019;67:1542-1557. https://doi.org/10.1002/glia.23627</Citation>
</Reference>
<Reference>
<Citation>Lieberman OJ, Choi SJ, Kanter E, et al. α-Synuclein-dependent calcium entry underlies differential sensitivity of cultured SN and VTA dopaminergic neurons to a parkinsonian neurotoxin. Eneuro 2017;4(6):ENEURO.0167-17.2017. https://doi.org/10.1523/ENEURO.0167-17.2017</Citation>
</Reference>
<Reference>
<Citation>Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F. Glutathione peroxidase, glial cells and Parkinson's disease. Neuroscience 1993;52:1-6. https://doi.org/10.1016/0306-4522(93)90175-f</Citation>
</Reference>
<Reference>
<Citation>Perry TL, Godin DV, Hansen S. Parkinson's disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 1982;33:305-310. https://doi.org/10.1016/0304-3940(82)90390-1</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
<li>Inde</li>
<li>Suisse</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
</settlement>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Verma, Aditi" sort="Verma, Aditi" uniqKey="Verma A" first="Aditi" last="Verma">Aditi Verma</name>
</noRegion>
<name sortKey="Bapat, Deepti" sort="Bapat, Deepti" uniqKey="Bapat D" first="Deepti" last="Bapat">Deepti Bapat</name>
<name sortKey="Diwakar, Latha" sort="Diwakar, Latha" uniqKey="Diwakar L" first="Latha" last="Diwakar">Latha Diwakar</name>
<name sortKey="Diwakar, Latha" sort="Diwakar, Latha" uniqKey="Diwakar L" first="Latha" last="Diwakar">Latha Diwakar</name>
<name sortKey="Kommaddi, Reddy Peera" sort="Kommaddi, Reddy Peera" uniqKey="Kommaddi R" first="Reddy Peera" last="Kommaddi">Reddy Peera Kommaddi</name>
<name sortKey="Kommaddi, Reddy Peera" sort="Kommaddi, Reddy Peera" uniqKey="Kommaddi R" first="Reddy Peera" last="Kommaddi">Reddy Peera Kommaddi</name>
<name sortKey="Ravindranath, Vijayalakshmi" sort="Ravindranath, Vijayalakshmi" uniqKey="Ravindranath V" first="Vijayalakshmi" last="Ravindranath">Vijayalakshmi Ravindranath</name>
<name sortKey="Ravindranath, Vijayalakshmi" sort="Ravindranath, Vijayalakshmi" uniqKey="Ravindranath V" first="Vijayalakshmi" last="Ravindranath">Vijayalakshmi Ravindranath</name>
<name sortKey="Ray, Ajit" sort="Ray, Ajit" uniqKey="Ray A" first="Ajit" last="Ray">Ajit Ray</name>
</country>
<country name="Suisse">
<noRegion>
<name sortKey="Schneider, Bernard L" sort="Schneider, Bernard L" uniqKey="Schneider B" first="Bernard L" last="Schneider">Bernard L. Schneider</name>
</noRegion>
</country>
<country name="France">
<region name="Île-de-France">
<name sortKey="Hirsch, Etienne C" sort="Hirsch, Etienne C" uniqKey="Hirsch E" first="Etienne C" last="Hirsch">Etienne C. Hirsch</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000070 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000070 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32618039
   |texte=   Glutaredoxin 1 Downregulation in the Substantia Nigra Leads to Dopaminergic Degeneration in Mice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32618039" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020